In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer's disease.
نویسندگان
چکیده
UNLABELLED Acetylcholine-esterase (AchE) inhibitors are one of the most potent drug molecules against Alzheimer's disease (AD). But, patients treated with current AchE inhibitors often experience severe side effects. Quercetin is a plant flavonoid compound which can act as AchE inhibitor and it may be a better alternative to current AchE inhibitors in terms of effectiveness with no or fewer side effects. AIMS The aim of the study was to compare quercetin with conventional AchE inhibitors to search for a better drug candidate. METHODS AND MATERIALS Physico-chemical properties of conventional drugs and quercetin were predicted using bioinformatics tools. Molecular docking of these compounds on the active site of AchE was performed using AutoDock and comparative analysis was performed. Later, modification on the basic structure of quercetin with different functional groups was done to perform QSAR analysis. RESULT AND DISCUSSION Quercetin showed a similar drug likeness score to the conventional drugs. The binding strength for quercetin in the active site of the enzyme was -8.8 kcal/mol, which was considerably higher than binding scores for some of the drugs such as donepezil (binding score -7.9 kcal/mol). Fifteen hydrogen bonds were predicted between quercetin and the enzyme whereas conventional drugs had fewer or even no hydrogen bonds. It implies that quercetin can act as a better inhibitor than conventional drugs. To find out even better inhibitor, similar structures of quercetin were searched through SIMCOMP database and a methylation in the 4-OH position of the molecule showed better binding affinity than parent quercetin. Quantitative structure activity relationship study indicated that O-4 methylation was specifically responsible for better affinity. CONCLUSION This in silico study has conclusively predicted the superiority of the natural compound quercetin over the conventional drugs as AchE inhibitor and it sets the need for further in-vitro study of this compound in future.
منابع مشابه
Computational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR
Malaria is a parasitic disease with limited chemotherapy options. Chemotherapy options are limited; moreover, drug resistant frequently occurs. The speed of drug development should be faster to overcome the emerging drug resistance. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship to identify the ideal physicochemical charact...
متن کاملComputational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR
Malaria is a parasitic disease with limited chemotherapy options. Chemotherapy options are limited; moreover, drug resistant frequently occurs. The speed of drug development should be faster to overcome the emerging drug resistance. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship to identify the ideal physicochemical charact...
متن کاملA comparative QSAR analysis, molecular docking and PLIF studies of some N-arylphenyl-2,2-dichloroacetamide analogues as anticancer agents
Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal levels, inhibit tumor growth and reduce proliferati...
متن کاملA comparative QSAR analysis, molecular docking and PLIF studies of some N-arylphenyl-2,2-dichloroacetamide analogues as anticancer agents
Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal levels, inhibit tumor growth and reduce proliferati...
متن کاملIn Silico Screening Studies on Methanesulfonamide Derivatives as Dual Hsp27 and Tubulin Inhibitors Using QSAR and Molecular Docking
The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is increased in response to various stress stimuli such as anticancer chemotherapy. This phenomenon can lead to survive of the cells and causes drug resistance. In this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin inhibitors in the treatment of cancer were applied to quantitative structure–act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of young pharmacists : JYP
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2013